Getting started with EarthCARE

Product selection, browsing, access, and tools

Shannon Mason & EarthCARE DISC ECMWF shannon.mason@ecmwf.int

© ECMWF June 25, 2025

Overview

- EarthCARE scientific data production models (ESA & JAXA)
- Selecting EarthCARE data products
- Browsing & quicklooks
- Access & downloading
- I/O and basic plotting tools

Important links

- EarthCARE Science <u>https://www.earthcarescience.net/</u>
- ESA Earth Online Portal <u>https://earth.esa.int/eogateway/missions/earthcare</u>
- JAXA EarthCARE <u>https://www.eorc.jaxa.jp/EARTHCARE</u>

• AMT Special Issue on EarthCARE algorithms & data products (pre-launch) <u>amt.copernicus.org/articles/special_issue1156.html</u>

- 2nd In-Orbit Validation Workshop (March 2025) www.earthcare-validation-2025-2.org/
- Science and Validation Workshop (December 2025)
 www.eorc.jaxa.jp/EARTHCARE/event/ws2025/

CPR

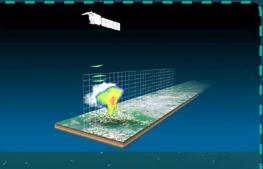
Earth Cloud and Radiation Explorer (EarthCARE) launched 29 May 2024
Commissioning Phase ended December 2024

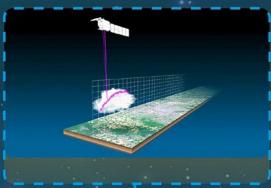
L1 data products released January 2025

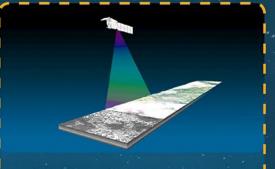
А

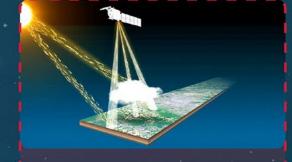
L2a & 2-instrument L2b products released March 2025

• ³ pieerpment L2b products to be released in Q4 2025 Clou aerosols radiation


MSI




ESA JAXA


earthcare

EarthCARE data processing

Cloud Profiling Radar Level-1b (JAXA)

Radar reflectivity
Doppler velocity profiles

Atmospheric Lidar Level-1b (ESA)

Attenuated backscatter in • Raleigh channel • Co-polar Mie channel

Cross-polar Mie channel

Multispectral Imager Level-1b (ESA)

Top-of-atmosphere
 radiances for solar channels
 Top-of-atmosphere
 brightness temperatures
 for thermal channels

Broadband Radiometer Level-1b (ESA)

 Filtered top-of-atmosphere shortwave radiance
 Filtered top-of-atmosphere total wave radiance

EarthCARE production models

• Paper describing ESA & JAXA science data processing chains: <u>doi.org/10.5194/amt-17-839-202</u>

- Product naming convention: [INSTRUMENTS]-[NAME]
 - C-NOM (CPR Nominal, L1)
 - A-EBD (ATLID Extinction, Backscatter & Depolarization ratio, L2a)
 - ACM-RT (ATLID-CPR-MSI Radiative Transfer, L2b)
- L1 products are common to ESA & JAXA:
 - JAXA: CPR L1 product
 - ESA: ATLID, MSI and BBR
 L1 products & auxiliary products
- ESA L2 products
- JAXA L2 products

CECMWF

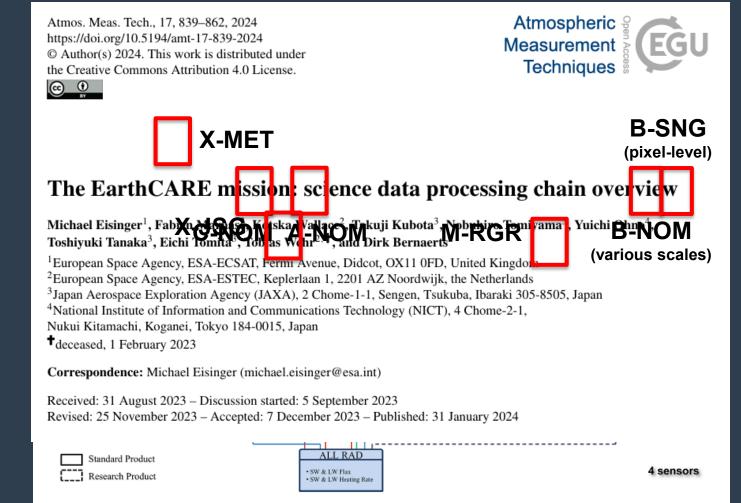


Figure 3. The JAXA EarthCARE Production Model shows all JAXA data products and ESA's level 1 and BBR level 2b products. Level 2 products and their retrieval algorithms (L2a, L2b) are described in this *AMT* special issue according to Table 2 (L2a) and Table 4 (L2b).

Selecting EarthCARE L2 data products

What kind of data do you want?

	Measur	ements	Detection & Classification		Retrievals	Retrievals	
	Which instruments?		What geometry?		Of what?	Of what?	
CPR	ATLID	MSI	B Biyede i&e precipitation	CloudsProfilinGloud aeros		Radiation	
CPR-only C-NOM (L1) C-FMR (Z, PIA) C-CD (V _D , V _S) w/ ATLID & MSI ACM-CAP	ATLID-only A-NOM (L1) A-EBD w/ CPR & MSI ACM-CAP	MSI-only M-RGR w/ CPR & MSI ACM-CAP (solar and TIR channels at nadir)	BBIRCentureoniask: B-NO-CMD (do Cointrobesisteneight: averaged) - COM B-SNG OF (pixel vevel) istic: AND NO-OAP Calcillatted top phase: corneccOP MSA& AJSORS: BM_RAD BMA-FLD BMA-FLD BMA-FLAD AM-ACD	Passive: Feature mæstssive: M-COP A-FM M-COP 8 Lidar-onl@-FMR + OMCAOT A-ICE (id@loud class'idar-only clouds) A-TC* + C-AQCE & Radar-onAyC-TC A-EBD* C-CLD Precipitatic@colassist ComposiGe:TC ACM-CO ACM-COMC-TC Synergist SynergistAcerosol claACM-CA ACM-CAR-TC AC-TC	Lidar-only: Y: A-EBD* Synergistic: ACM-CAP te: M tic: P *when using A-TC and variables with suffix 1c	Fluxes & heating rates: ACM-RT Radiative closure: ACMB-DF	

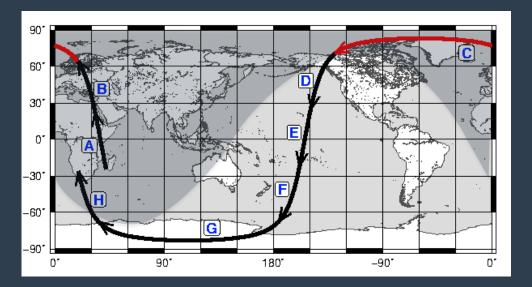
ECMUF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

remove lidar noise

EarthCARE datafile naming conventions

ECA EXAE ATL NOM 1B 20250601T131853Z 20250601T144838Z 05735E

mission (always ECA) production centre (EX for ESA, JX for JAXA)


expanded product name of form XXX YYY LL

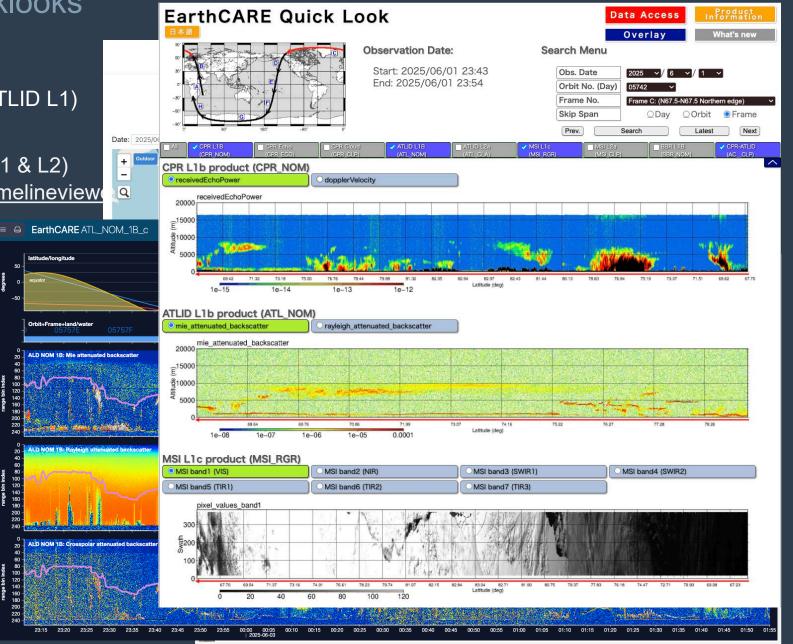
sensing start-time of form YYYYMMDDTHHMMSSZ

product baseline (starting from AA minor increment \rightarrow AB ; major increment \rightarrow BA)

- All EarthCARE data are divided into 8 "frames" per orbit
 - Allows for very easy sub-sampling:
 - A & E are always equatorial (night & day, respectively)
 - C is boreal, G is austral
 - B & H are night-time extratropics;
 D & F are day-time extratropics
- Sun-synchronous: A frames cross the equator around 02:00 local solar time; E frames cross the equator around 14:00 local solar time
- Each data product comprises
 - a netCDF4/HDF5 file (*.h5) containing the data (in the "ScienceData" group)
 - an XML header file (*.HDR) containing orbital/frame metadata, a list of inputs files & configuration settings **ECMWF** EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

processing time of form orbit number YYYYMMDDTHHMMSSZ & frame

Discovery, browsing and quicklooks


- Timeline viewers
 - EarthCARE Imagery Portal (CPR & ATLID L1) web.meteo.mcgill.ca/EarthCARE/
 - EarthCARE Timeline Viewer (ATLID L1 & L2) portal.maap.eo.esa.int/ini/earthcare/timelineview

- 60 - 80 - 100

- JAXA Quicklook (L1 & L2) https://www.eorc.jaxa.jp/EARTHCARI
- ESA Orbit Prediction Tool evdc.esa.int/orbit/

CECMWF

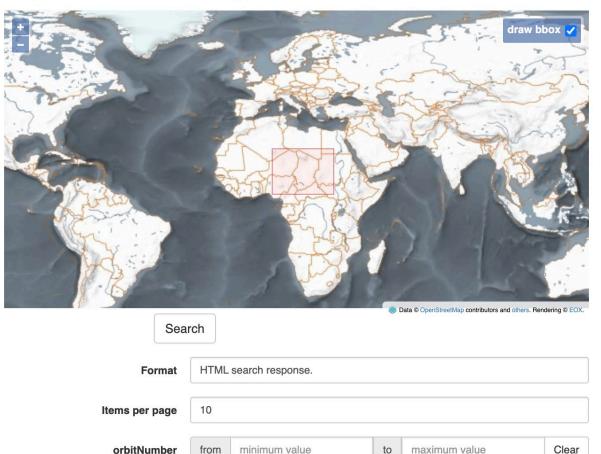
 Global Stratospheric Aerosol Watch aerosolstrato.projet.latmos.ipsl.fr/

Access and downloading

- ESA Online Access and Distribution System (OADS):
 - L1 products: ec-pdgs-dissemination1.eo.esa.int/oads/
 - L2 products: ec-pdgs-dissemination2.eo.esa.int/oads/
 - Searchable, or navigable by "tree"
- OADS-Download Python script:
 - github.com/koenigleon/oads-download
 - Current download limit of 3000 products/day for most users
 - Relatively simple interface, but easy to add a shell script wrapper:

```
usage: oads_download [-h] [-d DATA_DIRECTORY] [-o [ORBIT_NUMBER ...]]
[-so START_ORBIT_NUMBER] [-eo END_ORBIT_NUMBER]
[-f [FRAME_ID ...]][-oaf [ORBIT_AND_FRAME ...]]
[-soaf START_ORBIT_AND_FRAME] [-eoaf END_ORBIT_AND_FRAME]
[-t [TIME ...]][-st START_TIME] [-et END_TIME]
[-r RADIUS_SEARCH RADIUS_SEARCH RADIUS_SEARCH]
[-pv PRODUCT_VERSION]
[-bbox BOUNDING_BOX BOUNDING_BOX BOUNDING_BOX]
[-overwrite] [--no_download] [--no_unzip] [--no_delete] [--no_subdirs]
[-c PATH_TO_CONFIG] [--debug] [--no_log]
[-i SELECT_FILE_AT_INDEX] [-V] [--export_results] [product_type ...]
```

back to collections


MISSION Phase

DOI:

Collection EarthCAREL2Products

EarthCARE ESA L2 Products for the EarthCARE Commissioning Team

Fill in your selection criteria to search the matching products.

Routine

10.57780/eca-0567509

EarthCARE datafile structure and metadata conventions

• For all netCDF4/HDF5 files, the main scientific contents are found in the ScienceData group

- Each instrument has its own native resolution (at L1), but many products are available on the "Joint Standard Grid" (JSG), which combines the along-track grid of CPR and the vertical grid of ATLID:
 - CPR along-track grid with resolution ~1km (2 CPR profiles, 3 to 5 ATLID profiles)
 - ATLID vertical grid: resolution ~100m up to around 20km;
 ~500m from 20km to 40km
 - MSI horizontal resolution ~500m across 150km swath

• For co-aligning products on different grids, use spatial (lat/lon) coordinates rather than time: there can be differences in the time coordinates between instruments (e.g. 3s difference between ATLID and CPR due to slight off-nadir pointing of ATLID)

• Very high standard for variable naming, metadata description, etc., but let us (L2 developers) know if something could be better described

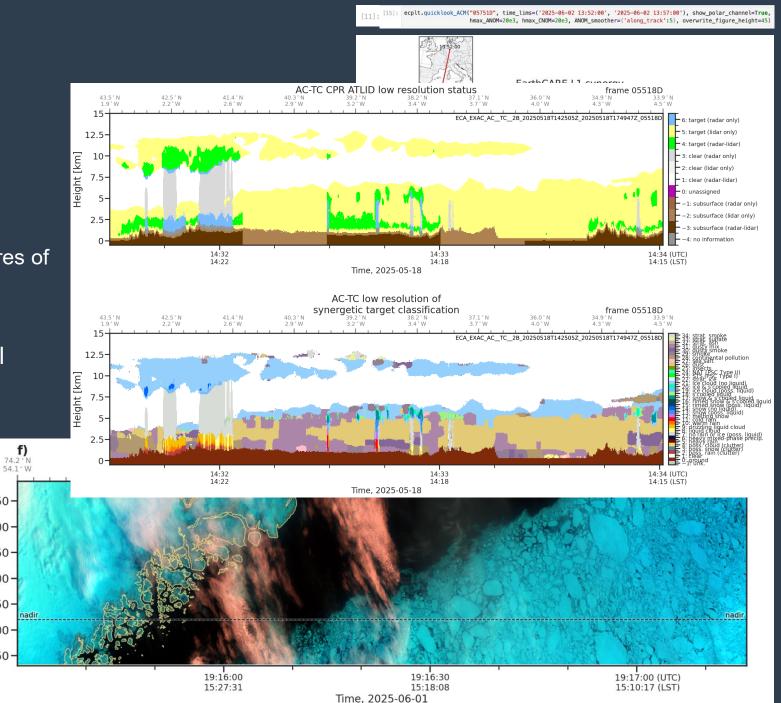
Basic I/O

- Python module "ectools": <u>bitbucket.org/smason/ectools</u>
- Open to contributions (just ask to be added); currently widely used among L2 developers, ESA, and cal/val teams.
- Product-specific loading functions using xarray:
 - ecio.load_AEBD(path_to_file)
 - use wildcards to select from among multiple files
- NOTE: each product will over-run the edges of the frame boundary, but by different amounts, so you can't rely on the along_track dimensions to be consistent between products

[30]:	<pre>ecio.load_ACTC("/perm/pasm/DISC/data/L2b/ACTC2B", product_baseline="A[B-Z]", frame_code="05*[A-H]", nested_directory_structure=True)</pre>									
	13 EarthCARE product files match path /perm/pasm/DISC/data/L2b/ACTC2B/*/*/*/E Z]_ACTC2B_*_*_05*[A-H]/ECA_EXA[B-Z]_ACTC2B_*_*_05*[A-H].h5; selecting -1 Selecting frame from 99 to 5044									
[30]:	xarray.Dataset									
	Dimensions: (along_track: 4945, JSG_height: 242)									
	along_track	(along_track)	int64	99 100 101 102 5041 5042 5043						
	▼ Data variables:									
	time	(along_track)	datetime64[ns]							
	latitude	(along_track)	float64	22.5 22.51 22.52 67.48 67.49						
	longitude	(along_track)	float64							
	geoid_offset	(along_track)	float64							
	elevation	(along_track)	float32							
	height	(along_track, JSG_height)	float32	•••						
	synergetic_targe	(along_track, JSG_height)	int8							
	synergetic_targe	(along_track, JSG_height)	int8	•••						
	synergetic_targe	(along_track, JSG_height)	int8							
	ATLID_target_cl	(along_track, JSG_height)	int8							
	ATLID_target_cl	(along_track, JSG_height)	int8							
	ATLID_target_cl	(along_track, JSG_height)	int8							

Plotting with ectools

- Consistent publication-quality aesthetic across 1D, 2D, curtain & across-swath images.
- Synergistic quicklooks: ecplt.quicklook_ACM()
 - Easy to configure to "zoom in" on features of interest

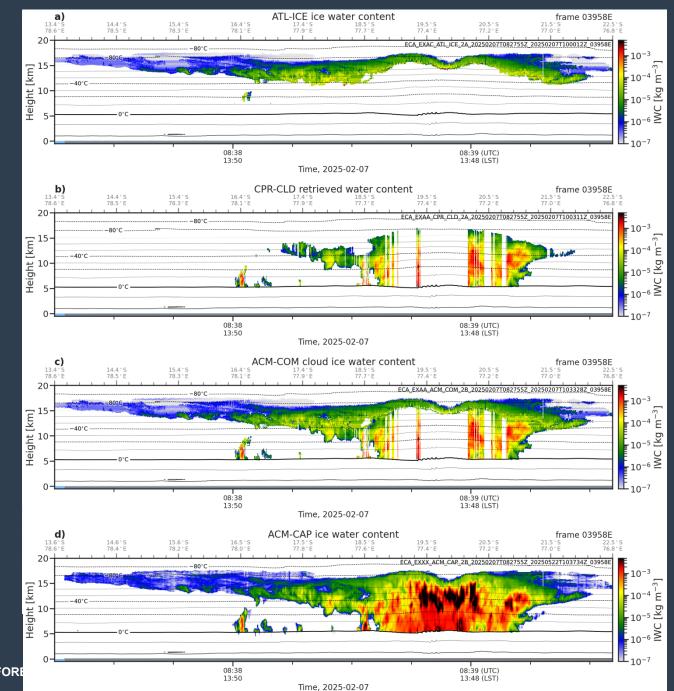

EUROPEAN CENTRE FOR MED

50 100

across-track pixel [-] 500-520-520-

> 300 350

- MSI "natural colour" images (RGB: SWIR-NIR-VIS) provide a powerful visual context for case studies
- Classification/quality status plots



Some example use-cases

- Comparing multiple products/variables to gain additional insights
- Intercomparison of retrieved quantities from different products
 (e.g. A-ICE, C-CLD, ACM-COM & ACM-CAP)

• get_XMET() lets you extract meteorological information from X-MET (the ECMWF forecast) onto the grid of any L2 product

- Overlay plot with other information (temperature contours)
- Comparison of retrievals against model cloud fields

ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FOR

EarthCARE is just getting started

• First L2 data released in March; synergistic retrievals and radiative closure assessment products still to be released in Q4 this year.

- We've improved our products and processors a lot based on in-flight data and in coordination with calibration/validation campaigns
- Also need to improve in response to exposure to scientific use:
 - So much redundancy between products and similarly-named variables—very easy to just use the first product or variable you come across and not investigate further. We need to help with this.
- What we're working on:
 - Product selection guides to match specific user needs to L2 products
 - Providing "cheat sheets" for L2 products to better describe caveats/pitfalls/best use of our data
- Any feedback on products, documentation or tools are very welcome