Improved characterisation of vegetation height from lidar observations: implications for above-ground biomass retrieval from space

João Carreiras, Shaun Quegan – University of Sheffield Pedro Rodríguez-Veiga, Heiko Balzter – University of Leicester

1

Outline

- Background
- Vegetation height measurements from space (GEDI)
- From vegetation height to above-ground biomass
- Above-ground biomass retrieval in the dry tropics
- Next steps

Background

Estimates of vegetation biomass are deeply embedded in the estimates of global carbon fluxes from (i) land use change (net source) and (ii) terrestrial land sink

Land use change

- high uncertainty: $\sigma \sim 50\%$
- e.g., carbon stocks in vegetation are a major source of uncertainty
- major efforts are required to resolve these issues, given the importance of this sector for climate change mitigation strategies

Vegetation height measurements from space (GEDI)

Global Ecosystem Dynamics Investigation (GEDI) lidar

- International Space Station, Dec 2018
- Nominal lifetime: 2 years
- 25-m footprint, 51.6° North and South
- high-quality observations of forest vertical structure
- first set of observations released end-January 2020

A common index of vegetation height used in the processing of lidar observations is Lorey's height:

basal area weighted height of all trees

Lefsky (2010) used a set of plots in the Brazilian Amazon and overlapping lidar measurements to derive the following relationship:

$$\begin{aligned} \textit{Lorey broad} &= -4.5 + (0.55 * \textit{extent}) - (0.102 * \textit{lead10}) \\ &- (0.0895 * \textit{trail10}) (n = 95) \end{aligned}$$

National Centre for Earth Observation NATURAL ENVIRONMENT RESEARCH COUNCIL

j.carreiras@shef.ac.uk João Carreiras

Saatchi et al. (2011) fitted pantropical and continental power-law equations relating Lorey's height from lidar data to above-ground biomass from reference field plots

ATURAL ENVIRONMENT RESEARCH COUNCIL

Above-ground biomass retrieval in the dry tropics

Mozambique

- National Forest Inventory 2015-2017
- > 3,000 field plots
- open access
- validation

Above-ground biomass retrieval in the dry tropics 10

L-band SAR global mosaics from JAXA

- Annual mosaics
 - ALOS PALSAR (2007-2010)
 - ALOS-2 PALSAR-2 (2015 2018)
- Dual-polarisation, 25-m resolution
- Open access

National Centre for Earth Observation

João Carreiras | j.carreiras@shef.ac.uk

University of Sheffield

Next steps

- Filtering GEDI data: best quality observations
- Derive locally calibrated power-law equations relating aboveground biomass as a function of Lorey's height (IF overlapping observations of plot and lidar data)
- Intercalibration ALOS PALSAR and ALOS-2 PALSAR-2 acquisitions
- Benchmarking approaches to deliver wall-to-wall maps of above-ground biomass based on GEDI observations
- Combining above-ground biomass maps to estimate change

