Seasonal impacts of biomass burning on ozone air quality across Southeast Asia

Maggie Marvin^{1,2} (mmarvin@ed.ac.uk), Paul Palmer^{1,2}, Barry Latter³, Richard Siddans³, Brian Kerridge³

¹NCEO, University of Edinburgh, UK; ²School of GeoSciences, University of Edinburgh, UK; ³NCEO, Rutherford Appleton Laboratory, UK

Ozone exposure guideline (WHO, 2005): $100 \mu g m^{-3} (\approx 50 ppbv)$

Biomass burning is known to cause unhealthy air

quality in Southeast Asia

- Related literature emphasizes the impacts of particulate matter (PM)
- Fires emit enough PM to exceed public health guidelines (WHO, 2005)
- Severe fires are estimated to cause up to 100,000 excess premature deaths
- How does biomass burning impact surface ozone across the region?

Photograph: M. Wooster

Photograph: D. Gaveau

Wooster et al. (2018)

Seasonality of biomass burning emissions from Southeast Asia in 2014

Calculated from GFED4.1s biomass burning inventory

Two distinct biomass burning regimes

1. Burning of DEFO (47%), SAVA (35%), and PEAT (14%) vegetation on mainland Southeast Asia peaking in March

Two distinct biomass burning regimes

2. Burning of DEFO (42%), SAVA (8%), and PEAT (49%) vegetation on mainland Southeast Asia peaking in September

Model and emissions

Atmospheric Chemistry Model

- GEOS-Chem v12.5.0 (geos-chem.org)
- Global and nested model
- Nested resolution: 0.25°x0.3125°
- Meteorology from GEOS-FP
- Full gas and aerosol chemistry

Emission Inventories

- Anthropogenic: MIX 2010 (Li et al., 2017)
- Biogenic: MEGAN v2.1 (Guenther et al., 2012)
- Pyrogenic: GFED v4.1 (van der Werf et al., 2017)

Seasonal trends in emissions of ozone precursors

Seasonal variation in tropospheric ozone reflects trends in the precursor emissions

EO Data

- RAL OMI L2 fv0214
- Gridded to match model
- Daily overpass at 13:30 LT
- Averaging kernels applied
- Filtered for good data
 - Passed all retrieval quality checks
 - Effective cloud fraction < 0.2

Ozone Formation Potential (OFP) links ozone directly to precursor emissions

$OFP_{VOC} = E_{VOC} \times MIR_{VOC}$

E: Emission rate (kg m⁻² s⁻¹)

MIR: Maximum Incremental Reactivity

Top Contributing VOC	MIR*
Isoprene (ISOP)	10.61
Propene (PRPE)	11.66
Acetaldehyde (ALD2)	6.54
Monoterpenes (MTPA/MTPO)	4.04
Formaldehyde (CH2O)	9.46
Xylene (XYLE)	4.00

^{*}g ozone per g VOC emitted Carter (2010)

Ozone Formation Potential (OFP) links ozone directly to precursor emissions

$OFP_{VOC} = E_{VOC} \times MIR_{VOC}$

E: Emission rate (kg m⁻² s⁻¹)

MIR: Maximum Incremental Reactivity

Top Contributing VOC	MIR*
Isoprene (ISOP)	10.61
Propene (PRPE)	11.66
Acetaldehyde (ALD2)	6.54
Monoterpenes (MTPA/MTPO)	4.04
Formaldehyde (CH2O)	9.46
Xylene (XYLE)	4.00

^{*}g ozone per g VOC emitted Carter (2010)

Ozone Formation Potential (OFP) links ozone directly to precursor emissions

$OFP_{VOC} = E_{VOC} \times MIR_{VOC}$

E: Emission rate (kg m⁻² s⁻¹)

MIR: Maximum Incremental Reactivity

Top Contributing VOC	MIR*
Isoprene (ISOP)	10.61
Propene (PRPE)	11.66
Acetaldehyde (ALD2)	6.54
Monoterpenes (MTPA/MTPO)	4.04
Formaldehyde (CH2O)	9.46
Xylene (XYLE)	4.00

^{*}g ozone per g VOC emitted Carter (2010)

Assumption: Ozone production is VOC-limited

$$L_N/Q = \frac{P(\text{HNO3})}{P(\text{H2O2}) + P(\text{HNO3})}$$

Kleinman et al. (2005)

Spatial distribution of estimated OFP

- OFP likely provides an <u>upper limit</u> on the yield of ozone from emitted VOC
- May underestimate the relative contribution of pyrogenic precursors

Spatial distribution of modeled P(O₃)

- Magnitudes of OFP and P(O₃) are not directly comparable
- P(O₃) confirms ozone production is enhanced over areas of biomass burning

Implications for public health

MDA8: Maximum Daily 8-Hour Average Ozone (ppb)

- WHO guideline (2005): 100 μg m⁻³ (\approx 50 ppbv)
- Short term exposure above the WHO guideline accounts for 0.2% of total mortality* (Vicedo-Cabrera et al., 2020)
- Ozone responsible for nearly 300 excess premature deaths on mainland Southeast Asia in March of 2014

mmarvin@ed.ac.uk

Ground-based data from Malaysia

- Collected by the Malaysian Department of Environment
- Provided by the Universiti Kebangsaan Malaysia
- Includes observations from 40 stations across Malaysia in 2014
- Ozone measurements:
 - UV absorption at 254 nm (Teledyne API Model 400/ 400E)
 - Precision: 0.5%
 - Detection limit: 0.4 ppb

Model ozone biased high compared to ground observations

Ground-based observations support EO evaluation

- In September, the model underestimates tropospheric ozone from EO overall
- Overestimates tropospheric ozone over parts of Malaysia where ground data collected

Conclusions

- Differences in the dry season and the type of land burned distinguish two different biomass burning regimes in Southeast Asia
- Each regime has a unique distribution of precursors that drives regional ozone production
- Pyrogenic precursors may produce ozone directly or indirectly through interactions with the biogenic sector
- Biomass burning accounts for 35% and 27% of regional OFP in March and September, respectively
 - Could make the difference between "healthy" and "unhealthy" ozone air quality for millions of people across Southeast Asia

