

Outline

- What are land surface temperature (LST) and land surface (spectral) emissivity (LSE)?
- Hyperspectral LWIR airborne imaging instrumentation
 - NERC NCEO's OWL
 - NASA-JPL's HyTES
- LST + LSE retrieval from airborne hyperspectral imagers
 - HyTES's retrieval algorithm
- Validation of LST/LSE retrieval methods
 - Development of robust validation methodology
 - Assessment of HyTES retrieval algorithm
- Preliminary LST/LSE retrieval work OWL

Land Surface Temperature Mission

Copernicus High Priority Candidate (see Mike Perry's talk)

Land Surface Temperature (LST)

- Aggregated radiometric surface temperature of the ensemble of components within the sensor FOV
- Why important?
 - ✓ evaluating land surface & land-atmosphere interactions (e.g evapotranspiration)
 - ✓ constraining surface energy budgets (& model parameters)
 - ✓ providing observations of surface temperature change both globally and in key regions
- Estimated from TOA spectral radiance in Thermal Infrared atmospheric window (8 13 μ m)... but requires knowledge of other parameters

What sensor measures (spectral radiance)

$$L_{\text{sen},\lambda} = \tau_{\lambda}(\theta) \left[\varepsilon_{\lambda} B_{\lambda}(\text{LST}) + (1 - \varepsilon_{\lambda}) L_{\text{sky},\lambda}^{\downarrow} \right] + L_{\text{sky},\lambda}^{\uparrow}(\theta)$$
emissivity

What we want to estimate

Land Surface [Spectral] Emissivity (LSE)

 Ratio of radiance emitted by objected to radiance that would be emitted by perfect emitter ('blackbody') at same temperature and wavelength

- Why important?
 - Calculating land surface temperature/ surface energy budgets
 - Land cover changes
 - Mineral mapping and resource exploitation
- Hyperspectral sensors offer new opportunity for simultaneous LST/emissivity retrieval + satellite mission development

Hyperspectral LWIR Airborne Instrumentation

- NCEO's Specim AisaOWL [OWL]
- NASA-JPL's Hyperspectral Thermal Emission Spectrometer [HyTES]

OWL	HyTES
Spectral range: 7.6 – 12.6 μm	Spectral range: 7.5 – 12.0 μm
96 spectral bands (50 nm bandwidth)	256 spectral bands (17.6 nm bandwidth)
TFOV = 24.2°	TFOV = 50.0°
At 1000m, pixel size 1.2m; swath ~410m (384 pixels)	At 1000m, pixel size 1.7m; (512 pixels)
Mass (scanhead): 13.1 kg	Mass (scanhead): 12 kg

Airborne data collected with HyTES in European sites (UK/Italy) June 2019 – data input for LSTM Design Studies

MDPI

LST/LSE retrieval

➤ Multiple algorithms been developed to tackle this

- carmine serio@unibas.it (C.S.); sara.venafra@unibas.it (S.V.)
- NASA Goddard Space Flight Center, 8800 Groenbelt Rd, Greenbelt, MD 20771, USA; giuliano liuzzi@nasa.gov
- ONERA, The French Aerospace Lab, 2 avenue Edouard Belin, FR-31055 Toulouse, France; laurent poutier@onera.fr
- MK-ASF, Karlsrube Institute of Technology, Hermann-von-Helmboltz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany: frank.goettsche@kit.edu.
- Correspondence: guido.masiello@umibas.it; Tel.: +39-0971-205158

remote sensing

Received: 17 May 2016; Accepted: 14 June 2018; Published: 20 June 2018

Abstract: A fully physical retrieval scheme for land surface emissivity spectra is presented,

ANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 49, NO. 4, APRIL 2011

parameters, and

with high.

Temperature and Emissivity Retrievals From Hyperspectral Thermal Infrared Data Using Linear Spectral Emissivity Constraint

Ning Wang, Hua Wu, Françoise Nerry, Chuanrong Li, and Zhao-Liang Li

trace-Owing to the ill-posed problem of radiometric equathe separation of land surface temperature (LST) and land emissivity (LSE) from observed data has always been a esome problem. On the basis of the assumption that the pectrum can be described by a piecewise linear function, method has been proposed to retrieve LST and LSE from

Temperature-emissivity separation (TES), as one of the key problems in thermal infrared (TIR) remote sensing, is attractive, although many studies have been undertaken on this aspect [1]. However, the retrieval of LST and LSE from space is a difficult. task. First, the radiative transfer equation (RTE) shows that the pherically corrected by perspectral thermal infrared data us-

Transport Satellite (MTSAT), Given the different characteristics of the imagers onboard

Temperature and Emissivity Separation (TES) algorithm

> Combination of 3 different algorithms (NEM, Ratio, MMD)

Operational LST&E products using TES

- ASTER
- MODIS v6
- ASTER GED
- HyTES
- ECOSTRESS
- VIIRS (planned)

Validation of LST/ Emissivity Retrieval Algorithm

Temperature measurements from LWIR radiometers over thermally distinct surfaces

Spectral emissivity measurements from:

- (i) Samples collected + measured in laboratory
- (ii) Measurements in field using portable instruments

Laboratory Instrumentation: Emissivity

Meas. Type

Sample port

30 mm

➤ NCEO's Bruker Vertex V70 FTIR spectrometer with external gold integrating sphere [Vertex]

Field Instrumentation: Emissivity

- ➤ NCEO's Bruker EM27 Open Path FTIR spectrometer [EM27]
- ➤ NASA-JPL's Designs & Prototypes microFTIR spectrometer [D&P]

	EM27	D&P
Spectral resolution	0.5 cm ⁻¹ ,4 cm ⁻¹	6 cm ⁻¹
Spectral recording range	5000 – 700 cm ⁻¹ (2 – 14 μm)	3333 - 2000 cm ⁻¹ (3 - 5 μm); 1250 – 833 cm ⁻¹ (8 - 12 μm)
Туре	Passive Emission	Passive Emission
FOV at 1m	60 mm	80 – 160 mm (depending on foreoptics)
Mass/ Power	18 kg, 40 – 80 W	12.5 kg, 18 W

EM27 measuring LWIR surface emissivity

EM27 measuring LWIR downwelling irradiance

Can we trust these 'truths'? - Laboratory Round Robin

Intercomparison of measurements from **13** different setups at **8** laboratories (incl NCEO-King's, NASA JPL, DLR..)

Samples: aluminium/gold sheets laminated in polyethylene

National Centre for Earth Observation

NATURAL ENVIRONMENT RESEARCH COUNCIL

Standard Deviation over LWIR (% mean)

Sample 1a: 0.142 (16.6%) Sample 2a: 0.110 (12.5%)

Higher uncertainties from laboratory measurements of emissivity than previously assumed

Can we trust these 'truths'? - Laboratory (2)

Differences observed amongst measurements of distilled water

Use of lowest measurement would result in LST 2.9 K less than if used highest emissivity

Amongst higher emissivity group, differences would lead to surface temperature retrieval differences of 0.7 K

Can we trust these 'truths'? - Field/Laboratory

Method	Heitronics KT15.85 band-specific emissivity
Laboratory (Vertex-V70)	0.956 ± 0.003
Field (EM27)	0.952 ± 0.009
Field (D&P)	0.956 ± 0.002

Data Collection [HyTES] during ESA/NASA NETSense Campaign 2019

Data collected as part of NETSense campaign (June 2019)

Grosseto, Italy

Duxford + surrounding areas, UK

HyTES data from NETSense Campaign

Grosseto AM 23 June 2019

HyTES Airborne vs. In Situ LST Data Comparison

All surfaces:

Bias = + 1.35 °C Scatter = 2.21 °C

Just land:

Bias = + 0.8 °C Scatter = 2.21 °C

HyTES – In Situ Field/Lab LSE

Data Collection (OWL)

R: 8.03μm G: 10.0μm B: 12.0μm

LST/Emissivity algorithm development: OWL Airborne Sensor

(1) Testing HyTES alg. adapted to OWL on simulated data

Sample	LST bias [OWL_v1] (K)	LST bias [OWL_v2] (K)
Water	1.096	0.161
Soil	1.966	1.125
Rock	0.338	0.734

(2) Testing OWL-derived LSTs and emissivity vs. in situ data

Summary and Concluding Remarks

- Hyperspectral airborne sensors offer new opportunities for mission and alg development for LST/LSE
- HyTES' LST and LSE retrieval alg. has been tested through deployment of field and lab instrumentation
 HyTES LSTs found to be within 1.35 K for all surfaces considered and 0.8 K for natural surfaces
- Evaluation of algorithms must take into account accuracy of field/laboratory instrumentation and outputs o Intercomparison of different laboratory emissivity setups suggests NCEO laboratory setup within 2% of mean over LWIR
- Early application of HyTES LST/emissivity retrieval algorithm to OWL data promising
 OWL algorithm within 1.2 K when tested on simulated data of natural surfaces
- Next steps: OWL validation with existing in situ data and HyTES 2021 campaign in Barrax flying OWL alongside in same platform

